Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Phys Chem B ; 128(15): 3585-3597, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38593280

RESUMO

Super-resolution and single-molecule microscopies have been increasingly applied to complex biological systems. A major challenge of these approaches is that fluorescent puncta must be detected in the low signal, high noise, heterogeneous background environments of cells and tissue. We present RASP, Radiality Analysis of Single Puncta, a bioimaging-segmentation method that solves this problem. RASP removes false-positive puncta that other analysis methods detect and detects features over a broad range of spatial scales: from single proteins to complex cell phenotypes. RASP outperforms the state-of-the-art methods in precision and speed using image gradients to separate Gaussian-shaped objects from the background. We demonstrate RASP's power by showing that it can extract spatial correlations between microglia, neurons, and α-synuclein oligomers in the human brain. This sensitive, computationally efficient approach enables fluorescent puncta and cellular features to be distinguished in cellular and tissue environments, with sensitivity down to the level of the single protein. Python and MATLAB codes, enabling users to perform this RASP analysis on their own data, are provided as Supporting Information and links to third-party repositories.


Assuntos
Encéfalo , Humanos
2.
Nat Commun ; 15(1): 1940, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431671

RESUMO

Volumetric super-resolution microscopy typically encodes the 3D position of single-molecule fluorescence into a 2D image by changing the shape of the point spread function (PSF) as a function of depth. However, the resulting large and complex PSF spatial footprints reduce biological throughput and applicability by requiring lower labeling densities to avoid overlapping fluorescent signals. We quantitatively compare the density dependence of single-molecule light field microscopy (SMLFM) to other 3D PSFs (astigmatism, double helix and tetrapod) showing that SMLFM enables an order-of-magnitude speed improvement compared to the double helix PSF by resolving overlapping emitters through parallax. We demonstrate this optical robustness experimentally with high accuracy ( > 99.2 ± 0.1%, 0.1 locs µm-2) and sensitivity ( > 86.6 ± 0.9%, 0.1 locs µm-2) through whole-cell (scan-free) imaging and tracking of single membrane proteins in live primary B cells. We also exemplify high-density volumetric imaging (0.15 locs µm-2) in dense cytosolic tubulin datasets.


Assuntos
Imageamento Tridimensional , Microscopia , Microscopia/métodos , Imageamento Tridimensional/métodos , Imagem Individual de Molécula/métodos , Nanotecnologia
3.
Immunity ; 57(2): 256-270.e10, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38354703

RESUMO

Antibodies can block immune receptor engagement or trigger the receptor machinery to initiate signaling. We hypothesized that antibody agonists trigger signaling by sterically excluding large receptor-type protein tyrosine phosphatases (RPTPs) such as CD45 from sites of receptor engagement. An agonist targeting the costimulatory receptor CD28 produced signals that depended on antibody immobilization and were sensitive to the sizes of the receptor, the RPTPs, and the antibody itself. Although both the agonist and a non-agonistic anti-CD28 antibody locally excluded CD45, the agonistic antibody was more effective. An anti-PD-1 antibody that bound membrane proximally excluded CD45, triggered Src homology 2 domain-containing phosphatase 2 recruitment, and suppressed systemic lupus erythematosus and delayed-type hypersensitivity in experimental models. Paradoxically, nivolumab and pembrolizumab, anti-PD-1-blocking antibodies used clinically, also excluded CD45 and were agonistic in certain settings. Reducing these agonistic effects using antibody engineering improved PD-1 blockade. These findings establish a framework for developing new and improved therapies for autoimmunity and cancer.


Assuntos
Proteínas Tirosina Fosfatases , Transdução de Sinais , Proteínas Tirosina Fosfatases/metabolismo , Antígenos CD28 , Receptores Imunológicos
4.
Nat Commun ; 14(1): 1611, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959206

RESUMO

T cells use finger-like protrusions called 'microvilli' to interrogate their targets, but why they do so is unknown. To form contacts, T cells must overcome the highly charged, barrier-like layer of large molecules forming a target cell's glycocalyx. Here, T cells are observed to use microvilli to breach a model glycocalyx barrier, forming numerous small (<0.5 µm diameter) contacts each of which is stabilized by the small adhesive protein CD2 expressed by the T cell, and excludes large proteins including CD45, allowing sensitive, antigen dependent TCR signaling. In the absence of the glycocalyx or when microvillar contact-size is increased by enhancing CD2 expression, strong signaling occurs that is no longer antigen dependent. Our observations suggest that, modulated by the opposing effects of the target cell glycocalyx and small adhesive proteins, the use of microvilli equips T cells with the ability to effect discriminatory receptor signaling.


Assuntos
Antígenos , Linfócitos T , Antígenos/metabolismo , Transdução de Sinais , Microvilosidades/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Ativação Linfocitária
5.
Angew Chem Int Ed Engl ; 61(42): e202206919, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35876263

RESUMO

Points for accumulation in nanoscale topography (PAINT) allows practically unlimited measurements in localisation microscopy but is limited by background fluorescence at high probe concentrations, especially in volumetric imaging. We present reservoir-PAINT (resPAINT), which combines PAINT and active control of probe photophysics. In resPAINT, an activatable probe "reservoir" accumulates on target, enabling a 50-fold increase in localisation rate versus conventional PAINT, without compromising contrast. By combining resPAINT with large depth-of-field microscopy, we demonstrate super-resolution imaging of entire cell surfaces. We generalise the approach by implementing various switching strategies and 3D imaging techniques. Finally, we use resPAINT with a Fab to image membrane proteins, extending the operating regime of PAINT to include a wider range of biological interactions.


Assuntos
DNA , Imagem Individual de Molécula , Imageamento Tridimensional , Proteínas de Membrana , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos
6.
Nat Commun ; 13(1): 2692, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577786

RESUMO

Soluble aggregates of the microtubule-associated protein tau have been challenging to assemble and characterize, despite their important role in the development of tauopathies. We found that sequential hyperphosphorylation by protein kinase A in conjugation with either glycogen synthase kinase 3ß or stress activated protein kinase 4 enabled recombinant wild-type tau of isoform 0N4R to spontaneously polymerize into small amorphous aggregates in vitro. We employed tandem mass spectrometry to determine the phosphorylation sites, high-resolution native mass spectrometry to measure the degree of phosphorylation, and super-resolution microscopy and electron microscopy to characterize the morphology of aggregates formed. Functionally, compared with the unmodified aggregates, which require heparin induction to assemble, these self-assembled hyperphosphorylated tau aggregates more efficiently disrupt membrane bilayers and induce Toll-like receptor 4-dependent responses in human macrophages. Together, our results demonstrate that hyperphosphorylated tau aggregates are potentially damaging to cells, suggesting a mechanism for how hyperphosphorylation could drive neuroinflammation in tauopathies.


Assuntos
Tauopatias , Receptor 4 Toll-Like , Proteínas tau , Glicogênio Sintase Quinase 3 beta/metabolismo , Heparina , Humanos , Fosforilação , Agregação Patológica de Proteínas/metabolismo , Isoformas de Proteínas/metabolismo , Tauopatias/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas tau/metabolismo , Proteínas tau/ultraestrutura
7.
Angew Chem Weinheim Bergstr Ger ; 134(42): e202206919, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-38505515

RESUMO

Points for accumulation in nanoscale topography (PAINT) allows practically unlimited measurements in localisation microscopy but is limited by background fluorescence at high probe concentrations, especially in volumetric imaging. We present reservoir-PAINT (resPAINT), which combines PAINT and active control of probe photophysics. In resPAINT, an activatable probe "reservoir" accumulates on target, enabling a 50-fold increase in localisation rate versus conventional PAINT, without compromising contrast. By combining resPAINT with large depth-of-field microscopy, we demonstrate super-resolution imaging of entire cell surfaces. We generalise the approach by implementing various switching strategies and 3D imaging techniques. Finally, we use resPAINT with a Fab to image membrane proteins, extending the operating regime of PAINT to include a wider range of biological interactions.

8.
J Phys Chem B ; 125(50): 13710-13717, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34883017

RESUMO

Optical imaging of protein aggregates in living and post-mortem tissue can often be impeded by unwanted fluorescence, prompting the need for novel methods to extract meaningful signal in complex biological environments. Historically, benzothiazolium derivatives, prominently Thioflavin T, have been the state-of-the-art fluorescent probes for amyloid aggregates, but their optical, structural, and binding properties typically limit them to in vitro applications. This study compares the use of novel uncharged derivative, PAP_1, with parent Thioflavin T as a fluorescence lifetime imaging probe. This is applied specifically to imaging recombinant α-synuclein aggregates doped into brain tissue. Despite the 100-fold lower brightness of PAP_1 compared to that of Thioflavin T, PAP_1 binds to α-synuclein aggregates with an affinity several orders of magnitude greater than Thioflavin T; thus, we observe a specific decrease in the fluorescence lifetime of PAP_1 bound to α-synuclein aggregates, resulting in a separation of >1.4 standard deviations between PAP_1-stained brain tissue background and α-synuclein aggregates that is not observed with Thioflavin T. This enables contrast between highly fluorescent background tissue and amyloid fibrils that is attributed to the greater affinity of PAP_1 for α-synuclein aggregates, avoiding the substantial off-target staining observed with Thioflavin T.


Assuntos
Amiloide , alfa-Sinucleína , Peptídeos beta-Amiloides , Proteínas Amiloidogênicas , Benzotiazóis , Corantes Fluorescentes , Imagem Óptica , Espectrometria de Fluorescência
9.
ACS Nano ; 15(8): 13591-13603, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34347438

RESUMO

Hexagonal boron nitride (hBN) is a promising host material for room-temperature, tunable solid-state quantum emitters. A key technological challenge is deterministic and scalable spatial emitter localization, both laterally and vertically, while maintaining the full advantages of the 2D nature of the material. Here, we demonstrate emitter localization in hBN in all three dimensions via a monolayer (ML) engineering approach. We establish pretreatment processes for hBN MLs to either fully suppress or activate emission, thereby enabling such differently treated MLs to be used as select building blocks to achieve vertical (z) emitter localization at the atomic layer level. We show that emitter bleaching of ML hBN can be suppressed by sandwiching between two protecting hBN MLs, and that such thin stacks retain opportunities for external control of emission. We exploit this to achieve lateral (x-y) emitter localization via the addition of a patterned graphene mask that quenches fluorescence. Such complete emitter site localization is highly versatile, compatible with planar, scalable processing, allowing tailored approaches to addressable emitter array designs for advanced characterization, monolithic device integration, and photonic circuits.

10.
J Biol Chem ; 296: 100631, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33823153

RESUMO

TREM2 is a pattern recognition receptor, expressed on microglia and myeloid cells, detecting lipids and Aß and inducing an innate immune response. Missense mutations (e.g., R47H) of TREM2 increase risk of Alzheimer's disease (AD). The soluble ectodomain of wild-type TREM2 (sTREM2) has been shown to protect against AD in vivo, but the underlying mechanisms are unclear. We show that Aß oligomers bind to cellular TREM2, inducing shedding of the sTREM2 domain. Wild-type sTREM2 bound to Aß oligomers (measured by single-molecule imaging, dot blots, and Bio-Layer Interferometry) inhibited Aß oligomerization and disaggregated preformed Aß oligomers and protofibrils (measured by transmission electron microscopy, dot blots, and size-exclusion chromatography). Wild-type sTREM2 also inhibited Aß fibrillization (measured by imaging and thioflavin T fluorescence) and blocked Aß-induced neurotoxicity (measured by permeabilization of artificial membranes and by loss of neurons in primary neuronal-glial cocultures). In contrast, the R47H AD-risk variant of sTREM2 is less able to bind and disaggregate oligomeric Aß but rather promotes Aß protofibril formation and neurotoxicity. Thus, in addition to inducing an immune response, wild-type TREM2 may protect against amyloid pathology by the Aß-induced release of sTREM2, which blocks Aß aggregation and neurotoxicity. In contrast, R47H sTREM2 promotes Aß aggregation into protofibril that may be toxic to neurons. These findings may explain how wild-type sTREM2 apparently protects against AD in vivo and why a single copy of the R47H variant gene is associated with increased AD risk.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Glicoproteínas de Membrana/fisiologia , Proteínas Mutantes/metabolismo , Mutação , Neurônios/patologia , Síndromes Neurotóxicas/patologia , Receptores Imunológicos/fisiologia , Doença de Alzheimer , Amiloide/metabolismo , Animais , Camundongos , Camundongos Knockout , Proteínas Mutantes/genética , Neurônios/metabolismo , Síndromes Neurotóxicas/etiologia
11.
Nat Methods ; 17(11): 1097-1099, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33046895

RESUMO

vLUME is a virtual reality software package designed to render large three-dimensional single-molecule localization microscopy datasets. vLUME features include visualization, segmentation, bespoke analysis of complex local geometries and exporting features. vLUME can perform complex analysis on real three-dimensional biological samples that would otherwise be impossible by using regular flat-screen visualization programs.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imagem Individual de Molécula/métodos , Realidade Virtual , Algoritmos , Animais , Células COS , Caulobacter crescentus/química , Linhagem Celular , Membrana Celular/química , Chlorocebus aethiops , Clatrina/química , Humanos , Células Jurkat , Microtúbulos/química , Poro Nuclear/química , Software
12.
J Phys Chem Lett ; 11(19): 8406-8416, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32924494

RESUMO

The benzothiazolium salt, Thioflavin T (ThT), has been widely adopted as the "gold-standard" fluorescent reporter of amyloid in vitro. Its properties as a molecular rotor result in a large-scale (∼1000-fold) fluorescence turn-on upon binding to ß-sheets in amyloidogenic proteins. However, the complex photophysics of ThT combined with the intricate and varied nature of the amyloid binding motif means these interactions are poorly understood. To study this important class of fluorophores, we present a detailed photophysical characterization and comparison of a novel library of 12 ThT-inspired fluorescent probes for amyloid protein (PAPs), where both the charge and donor capacity of the heterocyclic and aminobenzene components have been interrogated, respectively. This enables direct photophysical juxtaposition of two structural groups: the neutral "PAP" (class 1) and the charged "mPAP" fluorophores (class 2). We quantify binding and optical properties at both the bulk and single-aggregate levels with some derivatives showing higher aggregate affinity and brightness than ThT. Finally, we demonstrate their abilities to perform super-resolution imaging of α-synuclein fibrils with localization precisions of ∼16 nm. The properties of the derivatives provide new insights into the relationship between chemical structure and function of benzothiazole probes.

13.
Nat Chem ; 12(9): 832-837, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32690897

RESUMO

Substantial evidence now exists to support that formation of DNA G-quadruplexes (G4s) is coupled to altered gene expression. However, approaches that allow us to probe G4s in living cells without perturbing their folding dynamics are required to understand their biological roles in greater detail. Herein, we report a G4-specific fluorescent probe (SiR-PyPDS) that enables single-molecule and real-time detection of individual G4 structures in living cells. Live-cell single-molecule fluorescence imaging of G4s was carried out under conditions that use low concentrations of SiR-PyPDS (20 nM) to provide informative measurements representative of the population of G4s in living cells, without globally perturbing G4 formation and dynamics. Single-molecule fluorescence imaging and time-dependent chemical trapping of unfolded G4s in living cells reveal that G4s fluctuate between folded and unfolded states. We also demonstrate that G4 formation in live cells is cell-cycle-dependent and disrupted by chemical inhibition of transcription and replication. Our observations provide robust evidence in support of dynamic G4 formation in living cells.


Assuntos
Quadruplex G , Imagem Individual de Molécula/métodos , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Fase G1 , Humanos , Microscopia de Fluorescência , Fase S , Imagem com Lapso de Tempo
14.
Proc Natl Acad Sci U S A ; 117(24): 13509-13518, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32493749

RESUMO

Protein misfolding and aggregation is the hallmark of numerous human disorders, including Alzheimer's disease. This process involves the formation of transient and heterogeneous soluble oligomers, some of which are highly cytotoxic. A major challenge for the development of effective diagnostic and therapeutic tools is thus the detection and quantification of these elusive oligomers. Here, to address this problem, we develop a two-step rational design method for the discovery of oligomer-specific antibodies. The first step consists of an "antigen scanning" phase in which an initial panel of antibodies is designed to bind different epitopes covering the entire sequence of a target protein. This procedure enables the determination through in vitro assays of the regions exposed in the oligomers but not in the fibrillar deposits. The second step involves an "epitope mining" phase, in which a second panel of antibodies is designed to specifically target the regions identified during the scanning step. We illustrate this method in the case of the amyloid ß (Aß) peptide, whose oligomers are associated with Alzheimer's disease. Our results show that this approach enables the accurate detection and quantification of Aß oligomers in vitro, and in Caenorhabditis elegans and mouse hippocampal tissues.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Anticorpos/imunologia , Agregados Proteicos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Animais , Anticorpos/química , Anticorpos/metabolismo , Especificidade de Anticorpos , Caenorhabditis elegans , Modelos Animais de Doenças , Epitopos , Hipocampo/metabolismo , Camundongos , Ligação Proteica , Conformação Proteica , Anticorpos de Domínio Único
15.
Biophys J ; 118(6): 1261-1269, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32075748

RESUMO

Cell-cell contacts often underpin signaling between cells. For immunology, the binding of a T cell receptor to an antigen-presenting pMHC initiates downstream signaling and an immune response. Although this contact is mediated by proteins on both cells creating interfaces with gap sizes typically around 14 nm, many, often contradictory observations have been made regarding the influence of the contact on parameters such as the binding kinetics, spatial distribution, and diffusion of signaling proteins within the contact. Understanding the basic physical constraints on probes inside this crowded environment will help inform studies on binding kinetics and dynamics of signaling of relevant proteins in the synapse. By tracking quantum dots of different dimensions for extended periods of time, we have shown that it is possible to obtain the probability of a molecule entering the contact, the change in its diffusion upon entry, and the impact of spatial heterogeneity of adhesion protein density in the contact. By analyzing the contacts formed by a T cell interacting with adhesion proteins anchored to a supported lipid bilayer, we find that probes are excluded from contact entry in a size-dependent manner for gap-to-probe differences of 4.1 nm. We also observed probes being trapped inside the contact and a decrease in diffusion of up to 85% in dense adhesion protein contacts. This approach provides new, to our knowledge, insights into the nature of cell-cell contacts, revealing that cell contacts are highly heterogeneous because of topography- and protein-density-related processes. These effects are likely to profoundly influence signaling between cells.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Difusão , Cinética , Transdução de Sinais
16.
Chem Sci ; 12(7): 2623-2628, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34164030

RESUMO

Fluorescent nucleobase surrogates capable of Watson-Crick hydrogen bonding are essential probes of nucleic acid structure and dynamics, but their limited brightness and short absorption and emission wavelengths have rendered them unsuitable for single-molecule detection. Aiming to improve on these properties, we designed a new tricyclic pyrimidine nucleoside analogue with a push-pull conjugated system and synthesized it in seven sequential steps. The resulting C-linked 8-(diethylamino)benzo[b][1,8]naphthyridin-2(1H)-one nucleoside, which we name ABN, exhibits ε 442 = 20 000 M-1 cm-1 and Φ em,540 = 0.39 in water, increasing to Φ em = 0.50-0.53 when base paired with adenine in duplex DNA oligonucleotides. Single-molecule fluorescence measurements of ABN using both one-photon and two-photon excitation demonstrate its excellent photostability and indicate that the nucleoside is present to > 95% in a bright state with count rates of at least 15 kHz per molecule. This new fluorescent nucleobase analogue, which, in duplex DNA, is the brightest and most red-shifted known, is the first to offer robust and accessible single-molecule fluorescence detection capabilities.

17.
Chem Sci ; 11(18): 4578-4583, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34122915

RESUMO

Neurodegenerative diseases such as Alzheimer's and Parkinson's are associated with protein misfolding and aggregation. Recent studies suggest that the small, rare and heterogeneous oligomeric species, formed early on in the aggregation process, may be a source of cytotoxicity. Thioflavin T (ThT) is currently the gold-standard fluorescent probe for the study of amyloid proteins and aggregation processes. However, the poor photophysical and binding properties of ThT impairs the study of oligomers. To overcome this challenge, we have designed Thioflavin X, (ThX), a next-generation fluorescent probe which displays superior properties; including a 5-fold increase in brightness and 7-fold increase in binding affinity to amyloidogenic proteins. As an extrinsic dye, this can be used to study unique structural amyloid features both in bulk and on a single-aggregate level. Furthermore, ThX can be used as a super-resolution imaging probe in single-molecule localisation microscopy. Finally, the improved optical properties (extinction coefficient, quantum yield and brightness) of ThX can be used to monitor structural differences in oligomeric species, not observed via traditional ThT imaging.

18.
Proc Natl Acad Sci U S A ; 116(28): 14002-14010, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31221762

RESUMO

The T cell receptor (TCR) initiates the elimination of pathogens and tumors by T cells. To avoid damage to the host, the receptor must be capable of discriminating between wild-type and mutated self and nonself peptide ligands presented by host cells. Exactly how the TCR does this is unknown. In resting T cells, the TCR is largely unphosphorylated due to the dominance of phosphatases over the kinases expressed at the cell surface. However, when agonist peptides are presented to the TCR by major histocompatibility complex proteins expressed by antigen-presenting cells (APCs), very fast receptor triggering, i.e., TCR phosphorylation, occurs. Recent work suggests that this depends on the local exclusion of the phosphatases from regions of contact of the T cells with the APCs. Here, we developed and tested a quantitative treatment of receptor triggering reliant only on TCR dwell time in phosphatase-depleted cell contacts constrained in area by cell topography. Using the model and experimentally derived parameters, we found that ligand discrimination likely depends crucially on individual contacts being ∼200 nm in radius, matching the dimensions of the surface protrusions used by T cells to interrogate their targets. The model not only correctly predicted the relative signaling potencies of known agonists and nonagonists but also achieved this in the absence of kinetic proofreading. Our work provides a simple, quantitative, and predictive molecular framework for understanding why TCR triggering is so selective and fast and reveals that, for some receptors, cell topography likely influences signaling outcomes.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Receptores de Antígenos de Linfócitos T/química , Animais , Humanos , Cinética , Ligantes , Ativação Linfocitária/genética , Complexo Principal de Histocompatibilidade/imunologia , Microvilosidades/genética , Microvilosidades/imunologia , Modelos Teóricos , Peptídeos/química , Peptídeos/imunologia , Fosforilação/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Imagem Individual de Molécula , Linfócitos T/química , Linfócitos T/imunologia
19.
Cell Rep ; 27(11): 3124-3138.e13, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31189100

RESUMO

Biomineralization of the extracellular matrix is an essential, regulated process. Inappropriate mineralization of bone and the vasculature has devastating effects on patient health, yet an integrated understanding of the chemical and cell biological processes that lead to mineral nucleation remains elusive. Here, we report that biomineralization of bone and the vasculature is associated with extracellular poly(ADP-ribose) synthesized by poly(ADP-ribose) polymerases in response to oxidative and/or DNA damage. We use ultrastructural methods to show poly(ADP-ribose) can form both calcified spherical particles, reminiscent of those found in vascular calcification, and biomimetically calcified collagen fibrils similar to bone. Importantly, inhibition of poly(ADP-ribose) biosynthesis in vitro and in vivo inhibits biomineralization, suggesting a therapeutic route for the treatment of vascular calcifications. We conclude that poly(ADP-ribose) plays a central chemical role in both pathological and physiological extracellular matrix calcification.


Assuntos
Biomineralização , Dano ao DNA , Poli Adenosina Difosfato Ribose/metabolismo , Calcificação Vascular/metabolismo , Adolescente , Adulto , Idoso , Animais , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Bovinos , Linhagem Celular , Células Cultivadas , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Osteoblastos/metabolismo , Osteoblastos/patologia , Estresse Oxidativo , Ratos , Ratos Wistar , Ovinos
20.
ACS Nano ; 13(4): 4538-4547, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30865421

RESUMO

Hexagonal boron nitride (h-BN) is a 2D, wide band gap semiconductor that has recently been shown to display bright room-temperature emission in the visible region, sparking immense interest in the material for use in quantum applications. In this work, we study highly crystalline, single atomic layers of chemical vapor deposition grown h-BN and find predominantly one type of emissive state. Using a multidimensional super-resolution fluorescence microscopy technique we simultaneously measure spatial position, intensity, and spectral properties of the emitters, as they are exposed to continuous wave illumination over minutes. As well as low emitter heterogeneity, we observe inhomogeneous broadening of emitter line-widths and power law dependency in fluorescence intermittency; this is strikingly similar to previous work on quantum dots. These results show that high control over h-BN growth and treatment can produce a narrow distribution of emitter type and that surface interactions heavily influence the photodynamics. Furthermore, we highlight the utility of spectrally resolved wide-field microscopy in the study of optically active excitations in atomically thin two-dimensional materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...